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Modeling of lon-Exchange Column Operation.
. Equilibrium Model for Univalent-Divalent Exchange

DAVID J. WILSON

DEPARTMENT OF CHEMISTRY
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

A mathematical model is presented for the operation of an ion-exchange
column exchanging divalent cations for univalent cations. Local equilibrium is
assumed to be maintained between the ion-exchange resin and the aqueous
phase. The cubic equations arising from the assumption of local equilibrium are
solved by Tartaglia’s method. The two partial differential equations describing the
advective motion of the ions are approximated by two sets of coupled ordinary
differential equations. The advective terms in these are represented by an
asymmetrical “upwind” algorithm which greatly reduces spurious numerical
dispersion.

INTRODUCTION

One of the most useful, powerful, and selective separation techniques
provided to the analytical chemist and the chemical engineer is that of
ion exchange. Helfferich argues that the roots of the technique go back to
Moses, or at least to Aristotle (/). Harm and Rumpler prepared the first
synthetic industrial ion exchanger in 1903 (2). The development of high-
capacity organic ion-exchange resins was ushered in by Adams and
Holmes’s discovery in 1935 that crushed phonograph records can act as
ion exchangers (3). From that time until the present the field of ion
exchange has been active and rapidly growing. Dilts’s book provides a
very informative introduction to the subject (4); we list for reference only
a few of the very large number of books on the subject (5-9). Helfferich’s
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book (1), although dated, provides very clear, detailed discussions of most
aspects of the theory, and very extensive bibliographies.

We shall be concerned here with the problem of modeling the behavior
of ion-exchange columns. Some years ago Helfferich noted the formi-
dable nature of the problem, commenting that it seemed a general theory
of column operation was hardly feasible (10). Improvements in the speed
and memory size of computers since that time make possible the use of
mathematical methods not then practical, but the problem remains a
very difficult one and we here explore only a few of its facets. Our method
of attack is based on that of Glueckauf (/1-13). This uses the concept of
theoretical plates, taken from the theory of distillation and used first in
chromatography by Martin and Synge (/4). Glueckauf calculates his
plate heights from fundamental parameters, however, while the size of
the compartments we shall partition the column into has, by the nature of
the algorithms we use to represent advection, no simple interpretation.
This approach, as will be seen subsequently, allows us to use fewer
compartments than are required by the theoretical plate model, which
very markedly decreases computer time requirements. A quite detailed
discussion of Glueckauf’s model is given by Helfferich (10); another lucid
discussion of the application of theoretical plate approach is given by
Samuelson (15).

We shall address two aspects of the problem of ion-exchange column
operation. These are: 1) solving the equilibrium problem arising when
one has univalent and divalent ions exchanging, which leads to a cubic
equation; and 2) reducing the amount of time required to integrate the
differential equations by using a modified algorithm to model advection.

ANALYSIS

In the following sections we first compare the exact and the numerical
results for the advection of a solute through a column in the absence of
ion exchange. We then work out the equations for the operation of an
ion-exchange column in which a univalent ion is being exchanged with
another univalent ion. This is followed by the analysis of a column in
which a univalent ion and a divalent ion are undergoing exchange. We
then turn to the problem of reducing the quite excessive numerical
dispersion which results from the usual theoretical plate analysis to
obtain the advection term. This leads us to the examination of a number
of so-called asymmetrical upwind algorithms recommended by Leonard
(16, 17) for representing the advective terms in our equations. These
algorithms have been shown to provide major reductions in numerical
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dispersion without loss of mathematical stability in the modeling of the
movement of non-ionic solutes in groundwater (/8-20) and in the
modeling of column separations involving non-ionic solutes (21, 22).
They turn out to be somewhat more touchy with regard to mathematical
stability when used on the coupled pair of sets of differential equations
needed to model ion-exchange column operation.

Numerical comparisons are made between the various algorithms for
representing advection, and a modification to improve stability is
proposed and tested. Numerical results on the distributions of Na* and
Ca’* are obtained and presented graphically.

Numerical computations were all done on a Zenith 150 personal
computer; programs were written in GW BASIC and compiled with the
IBM compiler. A typical run with a column partitioned into 20
compartments required 31 min of computer time.

Numerical Dispersion in the Theoretical Plate Model. Representation
of Advection

In this section we examine and solve exactly the theoretical plate
model for the displacement of a solute from a column without ion
exchange. These results are compared with the exact solution of the
problem.

Let us consider the displacement of solute from the column shown in
Fig. 1. We let v be the volumetric flow rate of liquid through the column,
and ¥V, be the volume of one of the compartments into which the column
is partitioned. We assume no dispersion aside from that associated with
the assumption that each compartment is well-mixed. We assume that the
solute is initially present at a concentration ¢, throughout the column,
and that its concentration in the displacing liquid is c¢.. Then the
equations governing the concentrations in the various compartments
are

de, _ v _

dl - Vw (Cn—l Cn)s n+ 1 (1)
dey _ v o _
el ) )

By induction it is easy to show that these equations have the solutions
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This we use to denote the time at which the middle of the front marking
the boundary between the original solution and the displacing solution
moves through the nth compartment. We obtain a measure of the
thickness of the front by determining the times at which d’,/dr* goes
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through an extremum. The time interval during which the front is passing
through the nth compartment, as measured by this procedure, is given
by

At,=\/n—=1V,/v (5)

This result, an ever-increasing thickness of the front as it moves down
the column, is in contradiction to the result one obtains by integrating the
partial differential equation which corresponds to Eq. (1),

9 =2 0
A ©)

where 4 = cross-sectional area of column. The general solution to this
equation is

v
1) = -— 7
) = f(x = %1) ™
and for our system we have

c(x,t) = cy, x > vt/A (8)
=Co, X >Vt/A 9
Since we have not included any dispersive term in Eq. (6), the front
remains infinitely sharp indefinitely as it moves down the column. The
broadening of the front which we find in the model described by Egs. (1)
and (2) is intrinsic in the nature of this mathematical representation and

constitutes numerical dispersion.

For a column partitioned into N compartments we have

V, =LA/N (10)

where L = column length
A = column cross section

This gives a front width of

At=@—%‘i— (11)
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As has long been known, decreasing the front width by a factor of 1/a
requires increasing N by a factor of g. Therefore, if we wish to model
columns yielding narrow fronts, we must use very large values of N.
These, in turn, require very small values of At if one is numerically
integrating the differential equations modeling the column. Computer
costs become excessive for these systems, and algorithms which reduce
the numerical dispersion resulting from the theoretical plate model
would be highly desirable.

We shall therefore explore three somewhat more elaborate formulas for
representing advection; these are

dc _ v 1 3
Vo= an (Fpeet 2= 3a) (2
v 1 7 3 3
] G CRRS TR DEs D0 BGE
v 1 1 1
= e (-gemten e -gen) a0

where v = linear velocity of liquid. The first of these representations is
Leonard’s QUICK algorithm (I6); the other two are discussed in an
earlier paper of ours (19). All three of these were found to reduce
numerical dispersion quite markedly below that resulting from use of the
simple algorithm

17}
—wfzigmq—g) (15)

on which the theoretical plate model is based. These were being used for
the modeling of the movement of a single, nonionic solute, however, so it
is not immediately evident that they will prove satisfactory in dealing
with the more complex coupled systems of equations resulting from the
modeling of ion exchange. In the next sections we develop the equations
governing equilibrium, electrical neutrality, and mass balance; then we
use these with the above algorithms for modeling advection to model the
operation of an ton-exchange column.

Univalent-Univalent lon Exchange

Our ion exchange process is taken as
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NaS + Li*(aq) = LiS + Na*(aq) (16)

where S~ represents an anionic binding site in the ion exchanger, and
NaS and LiS represent univalent cations bound at these sites. The
equilibrium relationship for Eq. (16) we take as

- ¢ LilNa~]
exalLi") ()
where ¢;; = moles of bound Li* per liter of exchanger

¢na = moles of bound Na* per liter of exchanger

[Na*] = molar concentration of Na* in the liquid phase

[Li*] = molar concentration of Li* in the liquid phase

Note that K is not the thermodynamic equilibrium constant; it includes
activity coefficients and can be expected to vary with varying concentra-
tions as illustrated, for example, in Dilts’s book (4). This, incidentally,
presents no problem in the following analyses; one simply uses a
concentration-dependent K,

The electrical neutrality requirement gives us

Cna tCLi = 8 (18)

where S, = moles of univalent anionic sites per liter of exchanger.
The mass balance relationships can be written as

my. = V,[Na*] + Viena (19)
and

my; =V, [Li*] + Ve, (20)

where My, = moles of Na* in the compartment of the column being
considered
m;; = moles of Li* in the compartment
V., = volume of aqueous phase in the compartment
V. = volume of ion exchanger in the compartment

We then use Egs. (18)-(20) to eliminate [Li*], [Na*], and cy, from Eq.
(17). Rearranging the resulting equation then yields a quadratic equation
for ¢y,
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V(K = Dedi+ [(L = K)V.Sg — mus — muKlew + KmySe=0  (21)
or

Act,+ Be; +C=0

Solution of this then gives

e = (=B — /BT = 44C)/24 (22)

(It turns out that one must use the minus sign to avoid negative
concentrations.)

From this, given the mole numbers of Na* and Li* in the compart-
ment, we can calculate all the concentrations in the aqueous and solid
phases when these have equilibrated. The aqueous concentrations are
then involved in advection as the ions move down the column.

If the column is initially allowed to come to equilibrium with a large
excess of solution having molar concentrations [Na'], and [Li*],, then
the initial values of the concentrations in the ion exchanger are given

by

o = K[Li"]4S,
Y [Na*], + K[Li*],

(23)

[Na*]S,
[Na*] + K[Li"*]

CRa = (24)
Univalent-Divalent lon Exchange
We take as our ion-exchange process
2NaS$ + Ca’*(aq) = CaS$, + 2Na*(aq) (25)
The equilibrium expression is then

- INa"ee,

K =
[Ca™]cka

(26)

where the notation is similar to that used in the previous section.
The electrical neutrality requirement for solid phase yields
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2¢cca + Cna = S (27)
The mass balance relationships are
my, = V,[Na™] + Viey, (28)
and
me, = V,[Ca®] + Ve, (29)

Use of Egs. (27)-(29) to eliminate all the variables from Eq. (25) except
cc, and rearranging then yields a cubic equation,

axct, + ayek, + ace, ta, =0 (30)
where
a; = -4V K+ V)V, (31)
a, =4[V ,K(mc, + V.Sy) — Vimyn, — V,Sy)] (32)
a,= -V, KS(dmc, + V.Sp) — (mn, — VASO)Z (33)
ay = V,Kmc,S; (34)

We originally hoped that this equation could be solved by a suitably
chosen simple numerical method—Newton’s method or a modification
thereof, or various other iterative methods. This turned out not to be the
case; the methods we tested worked over portions of the ranges of
parameters of interest, but over other portions either failed to converge or
converged too slowly to be of use. It was therefore necessary to solve the
cubic by the exact method developed independently by S. del Ferro and
by N. Tartaglia in the 16th century and first published by Cardano (23); a
more accessible reference is Uspensky (24).

Tartaglia’s method turned out to be quite tractable. Although it requires
the use of complex arithmetic (including square and cube roots of
complex numbers), subroutines for this are readily programmed. We
found this approach to be fast and accurate over almost the entire range
of parameters tested. It was necessary to test all three roots for suitability;
if there is a pair which are complex conjugates, one uses the single real
root. If all roots are real, one takes the one which makes all concentra-
tions positive.
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Advection and lon Exchange

Here we combine the effects of the advective motion of the aqueous
phase through the ion-exchange column with the effects of ion exchange,
assumed to be at local equilibrium. (That is, the solid and aqueous
phases in any given compartment are taken as being at equilibrium with
respect to ion transport between them.) We examined in detail the
theoretical plate model, then grafted on our other algorithms for
representing advection. Physical dispersion is left out of our analysis,
since we wish to study numerical dispersion and reduce it to the lowest
feasible level. It should be noted in passing that Koussis has suggested the
use of linear combinations of advection algorithms having greater or
lesser numerical dispersion as a means of representing physical disper-
sion (25). Our model is diagrammed in Fig. 1.

Let my, ; = moles of sodium in the ith compartment

M, ; = moles of calcium in the ith compartment
[Na*]; = concentration of sodium ion in the aqueous phase of the
ith compartment, mol/L
[Ca**]; = concentration of calcium ion in the aqueous phase of the
ith compartment, mol/L
Cna; = concentration of bound sodium in the solid phase of the
ith compartment, mol/L
Ccs; = concentration of bound calcium in the solid phase of the
ith compartment, mol/L
V,, = volume of aqueous phase in one compartment, L
V. = volume of ion exchanger in one compartment, L
v = volumetric flow rate, L/unit time
N = number of compartments into which the column is
partitioned

Then the theoretical plate model gives

dmy,;
dt

= v([Na"];., — [Na']) (35)

@’d—fﬂ = y([Ca®]_, - [Ca¥]), i=1,2,...,N  (36)

We assume here that [Na*], and [Ca®*], are the influent concentrations of
these ions.
The requirement that the solid phase be electrically neutral gives
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Cnai + 2Ccai = S0 37)

where, as before, S, is the concentration of anionic sites (assumed singly
charged) in the ion exchanger, in mol/L. The mass balance equations
now take the form

Mya: = VINa']; + Viea, (38)
mCa.i = leca2+]i + chCa.i (39)

The requirement of local equilibrium gives an equation essentially
identical to Eq. (26),

— [Na+]?cCai

K. =
' [Caz+]lC2Na.i

(40)

K; is subscripted since it varies with the sodium and calcium ion
concentrations through their effects on activity coefficients. We shall
neglect this in the following, but it could fairly readily be included.

The same procedure used to derive Eq. (30) above is then used to
obtain a cubic equation in cc, ;

AyC,; + AxCha; + arccy; + ap =0, i=1,2,...,N (41)

where
a; = —4V.K, + V)V, (42)
a, =4[V ,K(mc,; + V.Sp) — Vi(my,, — VSy)) (43)
a, = —V.KS(4mec,; + V.Sy) = (mn.; — V.So)’ (44)
ay = V,Kimc,,S; (45)

An ion-exchange run on the column is then modeled as follows. The
initial state of the column is assumed given {concentrations of both ions
in the liquid and solid phases of all compartments), as is the composition
of the solution being used to elute the column. Equations (35) and (36) are
then integrated forward one increment in time, Ar. The new values of the
my,; and mc,; are substituted into Eqs. (42)-(45), and the new values of
the ¢c,; are calculated by solving the cubics, Eq. (41). Equations (37)-(39)
are solved for the other concentrations; these are given by

Cnai = So = 2Cca (46)
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[Ca2+]i = (mCa.i - VscCa.i)/Vw (47)
[Na™]; = (Mo, = ViSo + 2Vieca )/ Vi (48)

If one is using a concentration-dependent equilibrium constant in Eq.
(40), one would next calculate a corrected value of K; and repeat the
process of determining the concentrations, iterating as necessary to
obtain convergence. (We did not do this.) One is then ready to integrate
Egs. (35) and (36) one more step Ar forward in time and repeat the
calculation of the concentrations. And so on, until the run is complete.
The numerical integration was done by means of a standard predictor-
corrector method (26); this operates as follows.
Starter formula:

‘ d
y(0) = (@) + 2 (o).l At (49)
Predictor:
* - dy
y (tn+1) - y(tn—l) + E [y(tn)atn]ZAt (50)
Corrector:
d d A
Ytn) = (1) + {d—f 1)+ % [y*(r,,ﬂ),tml} 2 e
Here
_ dy .y
tn - nAt . and dl (tn) d( {y(tn)’tn]

As will be seen in the section on results, use of Egs. (35) and (36) to
describe advection leads to a good deal of spreading of the elution front
from numerical dispersion. In the numerical integration scheme we
therefore replaced Eqgs. (35) and (36) with one of the following three pairs
of equations obtained from Egs. (12)-(14).

dmNai= __1_ + +1. _é +,)
s =y = LiNatl 4 20Nal - 2Na)) ()

dmCa,i - _1 24 24y __3_ 24 )
e ( L 1Ca¥ )+ 2[Ca]y — S[Ca™))  (53)
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or

dmNa,' ( 1 + 7 + 3 + 3 + )
d o= —_ N o+ <IN I N — = IN .
yt v 8 [ a ]I—Z 8 [ a ]I 1 8 [ a ]l 8 [ a ]l+1 (54)

dmc,; _ (-l 2+ 7 w3 24p _ 3 2+ )
dt 14 8 [Ca ]i—z + 8 lca ]I*—l 8 lca ]l' 8 [Ca ]i+l

(55)
or

dmuya,;

s =y = L Natli + Na*li = 3 [Na®) = § INa*liat) - (56)

dmc,;

= _l 247 24 _l 2+ _l 2+ )
s = y( = LCat s + [Ca¥liy - § [Ca¥), — §[Ca*]y) (57)

These advection algorithms resulted in quite marked decreases in
numerical dispersion, as will be seen in the next section. It was found,
however, that in the context of the ion-exchange problem they exhibit
instabilities for some values of the system parameters; these show up as
oscillations in the concentration profiles in the column and “wiggles” in
the concentrations in the elution front as it comes off the column.
Examples of this behavior will be shown in the next section. In a few of
the runs the instabilities were sufficiently severe to result in program
crashes—error conditions caused by negative or complex concentrations.
Some way of increasing the mathematical stability of the algorithm used
to model advection was obviously needed.

In another connection Koussis had suggested to us the use of linear
combinations of advection algorithms of greater and lesser numerical
dispersivity as a cheap and effective way to model physical dispersion
(25). This led us to try linear combinations of the simple, extremely stable,
very dispersive theoretical plate algorithm (Eq. 1) with one of the less
dispersive but also less stable algorithms (Eq. 12, 13, or 14). We therefore
tested two types of combined algorithms,

% a1+ (1-a)[13] (58)
Ox

and
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—v—aﬁza-[1]+(l—a)~[l4] (59)
Ox

where 0 < a < 1. Relatively small components of the theoretical plate
algorithm (Eq. 1) were found to eliminate the instability problems, and
yielded elution fronts which were substantially narrower than those
resulting from the use of the theoretical plate algorithm alone.

COMPUTATIONS AND RESULTS

A program to carry out the numerical work was written in GW BASIC,
the equivalent of BASICA, and run on a Zenith 150 microcomputer. A
run in which the column was represented by 20 compartments and in
which two column volumes of eluting liquid were passed into the column
required about 3 h of computer time when the program was run in
interpreted GW BASIC. These long running times for the program
encouraged us to acquire a BASICA compiler; this reduced the amount
of computer time for a run like that described above to about 30 min.

We next examined some representative results. We considered the
elution of an ion-exchange column nearly saturated with Ca** by elution
with relatively concentrated NaCl solutions. It was assumed in all cases
that the volume of the column was 20 L; 10 L of which was solid ion
exchanger and 10 L of which was mobile aqueous phase. The ion-
exchange resin was assumed to contain 3.0 mol/L of univalent anionic
sites. The column was assumed to be brought to equilibrium initially with
a very large volume of solution having [Ca?*] = 020 M, [Na*] = 0.05 M,
and [C17] = 045 M. The other parameters in the model are indicated in
the figure legends.

In Figs. 2, 3, and 4 are shown eluate concentrations of Cl1~, Na*, and
Ca’ as functions of time elapsed since the initiation of elution. In these
runs the advection term is represented by 0.3 X Eq. (1) + 0.7 X Eq. (13)
which, as we shall see shortly, very markedly reduces numerical
dispersion but still avoids instability. Note that in these three figures the
abscissa has its origin at 5 min. We find that the widths of the CI™ and
Na* fronts are narrowed as N, the number of compartments into which
the column is partitioned, increases from 10 to 40, the width of the peak in
the Ca’* concentration decreases, and its height increases. Intuitively,
this is what one would expect, and it is in qualitative agreement with
Tamamushi’s findings (22) for gas chromatography columns. The width
of the CI™ front gives a measure of the extent of the numerical dispersion.
In the absence of numerical dispersion, the Cl™ curves would show an
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moles/L

Time (min)

FIG. 2. Plots of effluent [Ca?*], [Na*], and [C17] versus time. V,, = LOL, ¥, = 1.0 L, §; = 3.0
M, Kcona = 40, N= 10, v = 1.0 L/min, initial [Na*] = 0.05 M, initial [Ca2*] = 020 M,
influent [Na*] = 3.0 M, influent [Ca?*] = 0.05 M, At = 0.025 min, a = 0.3 in Eq. (58).
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FiG. 3. Plots of effluent [Ca?*], [Na*], and {C17] versus time. N = 20; other parameters as in
Fig. 2.
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F1G. 4. Plots of effluent [Ca?*], [Na*], and [CI~] versus time. N = 40; other parameters as in
Fig. 2.

infinitely sharp step in concentration, since no physical dispersion is
included in our model. The much greater width of the Na* front is a
measure of the “chemical dispersion™ of the system; we shall be
concerned with this later.

Figures 5 and 6 plot the Ci~ effluent concentrations for models having
10, 20, and 40 compartments. In Figure S the theoretical plate model was
used; in Fig. 6, 0.3 X Eq. (1) + 0.7 X Eq. (13). Front widths are substan-
tially less in Fig. 6 than in Fig. 5, demonstrating the very substantial
reductions in numerical dispersion which result from the use of an
upwind, asymmetrical algorithm for representing advection. This makes
possible very substantial savings in computer time, since the number of
compartments required to obtain a given front width is reduced to about
half that required by the theoretical plate model, and the size of A, the
time increment in the numerical integration, can be doubled. The total
savings in computer time required amount, therefore, to about 75%.

Figure 7 shows the dependence of the Ca?®* elution peak on the number
of compartments, N. As N is increased, the Ca’* peak becomes somewhat
narrower and sharper, but chemical dispersion evidently gives it an
intrinsic and rather substantial width. Kinetic effects, not included in our
model, would result in still further broadening.

The effect of changing the proportions of the two advection algorithms



13:19 25 January 2011

Downl oaded At:

MODELING OF ION-EXCHANGE COLUMN OPERATION. | 783

[Ci7]

o 1 1 i 3

0 10 15 20
Time (min)

[&)]

FIG. 5. Plots of effluent [C17] versus time. Advection is represented by Eq. (1), the theoretical
plate model. N = 10, 20, 40, as labeled. Other parameters as in Fig. 2.
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FIG. 6. Plots of effluent [CI™] versus time. Advection is represented by Eq. (58) with a = 0.3.
N = 10, 20, 40, as labeled. Other parameters as in Fig. 2.
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FiG. 7. Plots of effluent [Ca®*] versus time. Advection is represented by Eq. (58) with
a= 03.N =10, 20, 40, as labeled. Other parameters as in Fig. 2.
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FIG. 8. Plots of effluent [Ca?*] versus time. Advection is represented by Eq. (58),a = 1, 0.3,

0.2, 0.1 from bottom to top. Influent {[Na*} = 5.0 M, N = 20, Ar = 0.05 min; other parameters

as in Fig. 2. Similar runs made with Eq. (59) representing advection are indistinguishable
from these.
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FIG. 9. Plots of effluent [Ca®*| versus time. Advection is represented by Eq. (58) with g = 0.3.
Ar = 0.05 min, influent [Na*] = 7.5, 5.0, 2.5 M (top to bottom), N = 20; other parameters as
in Fig. 2.

used is shown in Fig. 8. The Ca®* elution peak becomes progressively
more narrow and tall as the proportion of the highly dispersive
theoretical plate algorithm is decreased. Evidently, using such a linear
combination of a dispersive and a nondispersive algorithm provides a
satisfactory method for representing physical dispersion.

In Fig. 9 we see the effects of changing the NaCl concentration in the
eluting solution. Increasing it results in a much narrower Ca** elution
peak and in drastically reduced tailing. These results suggest that it might
be advisable to hit the column initially with the highest feasible NaCl
concentration, and then push this on through the column with a
substantially more dilute solution; this might reduce chemicals costs and
waste disposal problems.

The effects of changing the relative binding strength of Ca** relative to
Na* are exhibited in Fig. 10. As one would expect, increasing the strength
of Ca®" binding broadens the elution peak and increases the extent of
peak tailing.

In conclusion, we note that the use of asymmetrical upwind algorithms
having low numerical dispersion can drastically reduce the amount of
computation required to model ion-exchange columns having a large
number of theoretical plates. Also, the solution of the cubic equation is
best carried out exactly by Tartaglia’s (Cardano’s) method, rather than by
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FIG. 10. Plots of effluent [CaZ"] versus time. Advection is represented by Eq. (58) with @ = 3.
At = 0.05 min, influent [Nat] =50 M, N=20, K =2, 4, 8 from top to bottom; other
parameters as in Fig. 2.

numerical approximation techniques. The resulting model can be
computed in a reasonable length of time on a microcomputer running
compiled BASIC.

A diskette for MS-DOS computers with the BASICA source program
and the compiled program is available for $3.00 to cover the costs of
mailing and the diskette.
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