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SEPARATION SCIENCE AND TECHNOLOGY, 21(8), pp. 767-787, 1986 

Modeling of Ion-Exchange Column Operation. 
I. Equilibrium Model for Univalent-Divalent Exchange 

DAVID J. WILSON 
DEPARTMENT OF CHEMISTRY 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

A mathematical model is presented for the operation of an ion-exchange 
column exchanging divalent cations for univalent cations. Local equilibrium is 
assumed to be maintained between the ion-exchange resin and the aqueous 
phase. The cubic equations arising from the assumption of local equilibrium are 
solved by Tartaglia’s method. The two partial differential equations describing the 
advective motion of the ions are approximated by two sets of coupled ordinary 
differential equations. The advective terms in these are represented by an 
asymmetrical “upwind algorithm which greatly reduces spurious numerical 
dispersion. 

INTRODUCTION 

One of the most useful, powerful, and selective separation techniques 
provided to the analytical chemist and the chemical engineer is that of 
ion exchange. Helfferich argues that the roots of the technique go back to 
Moses, or at least to Aristotle (1). Harm and Rumpler prepared the first 
synthetic industrial ion exchanger in 1903 (2). The development of high- 
capacity organic ion-exchange resins was ushered in by Adams and 
Holmes’s discovery in 1935 that crushed phonograph records can act as 
ion exchangers (3). From that time until the present the field of ion 
exchange has been active and rapidly growing. Dilts’s book provides a 
very informative introduction to the subject (4); we list for reference only 
a few of the very large number of books on the subject (5-9). Helfferich’s 
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768 WILSON 

book (I), although dated, provides very clear, detailed discussions of most 
aspects of the theory, and very extensive bibliographies. 

We shall be concerned here with the problem of modeling the behavior 
of ion-exchange columns. Some years ago Helfferich noted the formi- 
dable nature of the problem, commenting that it seemed a general theory 
of column operation was hardly feasible (10). Improvements in the speed 
and memory size of computers since that time make possible the use of 
mathematical methods not then practical, but the problem remains a 
very difficult one and we here explore only a few of its facets. Our method 
of attack is based on that of Glueckauf (11-13). This uses the concept of 
theoretical plates, taken from the theory of distillation and used first in 
chromatography by Martin and Synge (14). Glueckauf calculates his 
plate heights from fundamental parameters, however, while the size of 
the compartments we shall partition the column into has, by the nature of 
the algorithms we use to represent advection, no simple interpretation. 
This approach, as will be seen subsequently, allows us to use fewer 
compartments than are required by the theoretical plate model, which 
very markedly decreases computer time requirements. A quite detailed 
discussion of Glueckaufs model is given by Helfferich (10); another lucid 
discussion of the application of theoretical plate approach is given by 
Samuelson (15). 

We shall address two aspects of the problem of ion-exchange column 
operation. These are: 1) solving the equilibrium problem arising when 
one has univalent and divalent ions exchanging, which leads to a cubic 
equation; and 2) reducing the amount of time required to integrate the 
differential equations by using a modified algorithm to model advection. 

ANALYSIS 

In the following sections we first compare the exact and the numerical 
results for the advection of a solute through a column in the absence of 
ion exchange. We then work out the equations for the operation of an 
ion-exchange column in which a univalent ion is being exchanged with 
another univalent ion. This is followed by the analysis of a column in 
which a univalent ion and a divalent ion are undergoing exchange. We 
then turn to the problem of reducing the quite excessive numerical 
dispersion which results from the usual theoretical plate analysis to 
obtain the advection term. This leads us to the examination of a number 
of so-called asymmetrical upwind algorithms recommended by Leonard 
(16, 17) for representing the advective terms in our equations. These 
algorithms have been shown to provide major reductions in numerical 
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MODELING OF ION-EXCHANGE COLUMN OPERATION. I 769 

dispersion without loss of mathematical stability in the modeling of the 
movement of non-ionic solutes in groundwater (18-20) and in the 
modeling of column separations involving non-ionic solutes (21, 22). 
They turn out to be somewhat more touchy with regard to mathematical 
stability when used on the coupled pair of sets of differential equations 
needed to model ion-exchange column operation. 

Numerical comparisons are made between the various algorithms for 
representing advection, and a modification to improve stability is 
proposed and tested. Numerical results on the distributions of Na' and 
Ca2+ are obtained and presented graphically. 

Numerical computations were all done on a Zenith 150 personal 
computer; programs were written in GW BASIC and compiled with the 
IBM compiler. A typical run with a column partitioned into 20 
compartments required 31 min of computer time. 

Numerical Dispersion in the Theoretical Plate Model. Representation 
of Advection 

In this section we examine and solve exactly the theoretical plate 
model for the displacement of a solute from a column without ion 
exchange. These results are compared with the exact solution of the 
problem. 

Let us consider the displacement of solute from the column shown in 
Fig. 1. We let v be the volumetric flow rate of liquid through the column, 
and V ,  be the volume of one of the compartments into which the column 
is partitioned. We assume no dispersion aside from that associated with 
the assumption that each compartment is well-mixed. We assume that the 
solute is initially present at a concentration co throughout the column, 
and that its concentration in the displacing liquid is c,. Then the 
equations governing the concentrations in the various compartments 
are 

-- dc ,  - "(em - c , )  
dt V, 

By induction it is easy to show that these equations have the solutions 
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770 WILSON 

Influent +: Liquid phase- 

' f i  

-Solid phase 

' Eluate 

FIG. 1. The model and notation. 

c,(t)  = (co - c,) exp (3)  m! 

and that c,(t) has a point of inflection when 

t = ( n  - 1)Vw/v (4) 

This we use to denote the time at which the middle of the front marking 
the boundary between the original solution and the displacing solution 
moves through the nth compartment. We obtain a measure of the 
thickness of the front by determining the times at which d2c,/dt2 goes 
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MODELING OF ION-EXCHANGE COLUMN OPERATION. I 771 

through an extremum. The time interval during which the front is passing 
through the nth compartment, as measured by this procedure, is given 
by 

This result, an ever-increasing thickness of the front as it moves down 
the column, is in contradiction to the result one obtains by integrating the 
partial differential equation which corresponds to Eq. (l), 

ac ac -((at) = - -- 
at A dx 

where A = cross-sectional area of column. The general solution to this 
equation is 

c(x,t) = f ( x  - +t) (7) 

and for our system we have 

C(X,t) = co, x > vtlA (8) 

Since we have not included any dispersive term in Eq. (6), the front 
remains infinitely sharp indefinitely as it moves down the column. The 
broadening of the front which we find in the model described by Eqs. (1) 
and (2) is intrinsic in the nature of this mathematical representation and 
constitutes numerical dispersion. 

For a column partitioned into N compartments we have 

where L = column length 
A = column cross section 

This gives a front width of 

- t/”t LA 
N V 

At - 
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772 WILSON 

As has long been known, decreasing the front width by a factor of lla 
requires increasing N by a factor of u2. Therefore, if we wish to model 
columns yielding narrow fronts, we must use very large values of N. 
These, in turn, require very small values of At if one is numerically 
integrating the differential equations modeling the column. Computer 
costs become excessive for these systems, and algorithms which reduce 
the numerical dispersion resulting from the theoretical plate model 
would be highly desirable. 

We shall therefore explore three somewhat more elaborate formulas for 
representing advection; these are 

3 
*C" 8 c n + l  

V 1 7 
Ax 8 z __ (-  ic,-2 + -c,-] - - - 3 ) (13) 

where v = linear velocity of liquid. The first of these representations is 
Leonard's QUICK algorithm (16); the other two are discussed in an 
earlier paper of ours (29). All three of these were found to reduce 
numerical dispersion quite markedly below that resulting from use of the 
simple algorithm 

dc v -v - z ---(C,-I - c,) 
at AX 

on which the theoretical plate model is based. These were being used for 
the modeling of the movement of a single, nonionic solute, however, so it 
is not immediately evident that they will prove satisfactory in dealing 
with the more complex coupled systems of equations resulting from the 
modeling of ion exchange. In the next sections we develop the equations 
governing equilibrium, electrical neutrality, and mass balance; then we 
use these with the above algorithms for modeling advection to model the 
operation of an ion-exchange column. 

Univalent-Univalent Ion Exchange 

Our ion exchange process is taken as 
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MODELING OF ION-EXCHANGE COLUMN OPERATION. I 773 

NaS + Li'(aq) = LiS + Na+(aq) (16) 

where S- represents an anionic binding site in the ion exchanger, and 
NaS and LiS represent univalent cations bound at these sites. The 
equilibrium relationship for Eq. (16) we take as 

where cLi = moles of bound Li' per liter of exchanger 
cNa = moles of bound Na' per liter of exchanger 
"a'] = molar concentration of Na' in the liquid phase 
[Li'] = molar concentration of Li' in the liquid phase 

Note that K is not the thermodynamic equilibrium constant; it includes 
activity coefficients and can be expected to vary with varying concentra- 
tions as illustrated, for example, in Dilts's book (4). This, incidentally, 
presents no problem in the following analyses; one simply uses a 
concentration-dependent K. 

The electrical neutrality requirement gives us 

where So = moles of univalent anionic sites per liter of exchanger. 
The mass balance relationships can be written as 

and 

whereMNa = moles of Na+ in the compartment of the column being 
considered 

.mLi = moles of Li' in the compartment 
V, = volume of aqueous phase in the compartment 
V,  = volume of ion exchanger in the compartment 

We then use Eqs. (18)-(20) to eliminate [Li'], "a'], and cNa from Eq. 
(17). Rearranging the resulting equation then yields a quadratic equation 
for cLi, 
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774 WILSON 

or 

Solution of this then gives 

(It turns out that one must use the minus sign to avoid negative 
concentrations.) 

From this, given the mole numbers of Na+ and Li+ in the compart- 
ment, we can calculate all the concentrations in the aqueous and solid 
phases when these have equilibrated. The aqueous concentrations are 
then involved in advection as the ions move down the column. 

If the column is initially allowed to come to equilibrium with a large 
excess of solution having molar concentrations [Na'], and [Li+],, then 
the initial values of the concentrations in the ion exchanger are given 
by 

K[Li+IoSo 
[Na+Io + K[LifJo 

C t i  = 

Univalent-Divalent Ion Exchange 

We take as our ion-exchange process 

2NaS + Ca2+(aq) * CaS, + 2Na+(aq) 

The equilibrium expression is then 

where the notation is similar to that used in the previous section. 
The electrical neutrality requirement for solid phase yields 
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MODELING OF ION-EXCHANGE COLUMN OPERATION. I 775 

The mass balance relationships are 

mNa = V,[Na+] + VscNa (28) 

and 

mca = Vw[ca2+] + VscCa (29) 

Use of Eqs. (27)-(29) to eliminate all the variables from Eq. (25) except 
cCa and rearranging then yields a cubic equation, 

where 

We originally hoped that this equation could be solved by a suitably 
chosen simple numerical method-Newton’s method or a modification 
thereof, or various other iterative methods. This turned out not to be the 
case; the methods we tested worked over portions of the ranges of 
parameters of interest, but over other portions either failed to converge or 
converged too slowly to be of use. It was therefore necessary to solve the 
cubic by the exact method developed independently by S. del Ferro and 
by N. Tartaglia in the 16th century and first published by Cardano (23); a 
more accessible reference is Uspensky (24). 

Tartaglia’s method turned out to be quite tractable. Although it requires 
the use of complex arithmetic (including square and cube roots of 
complex numbers), subroutines for this are readily programmed. We 
found this approach to be fast and accurate over almost the entire range 
of parameters tested. It was necessary to test all three roots for suitability; 
if there is a pair which are complex conjugates, one uses the single real 
root. If all roots are real, one takes the one which makes all concentra- 
tions positive. 
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776 WILSON 

Advection and Ion Exchange 

Here we combine the effects of the advective motion of the aqueous 
phase through the ion-exchange column with the effects of ion exchange, 
assumed to be at local equilibrium. (That is, the solid and aqueous 
phases in any given compartment are taken as being at equilibrium with 
respect to ion transport between them.) We examined in detail the 
theoretical plate model, then grafted on our other algorithms for 
representing advection. Physical dispersion is left out of our analysis, 
since we wish to study numerical dispersion and reduce it to the lowest 
feasible level. It should be noted in passing that Koussis has suggested the 
use of linear combinations of advection algorithms having greater or 
lesser numerical dispersion as a means of representing physical disper- 
sion (25). Our model is diagrammed in Fig. 1. 

Let mNa,i = moles of sodium in the ith compartment 
mCasi = moles of calcium in the ith compartment 
[Na+Ii = concentration of sodium ion in the aqueous phase of the 

[Ca2+Ii = concentration of calcium ion in the aqueous phase of the 

c ~ ~ , ~  = concentration of bound sodium in the solid phase of the 

cca,i = concentration of bound calcium in the solid phase of the 

V, = volume of aqueous phase in one compartment, L 
V, = volume of ion exchanger in one compartment, L 
v = volumetric flow rate, Lhnit  time 
N =  number of compartments into which the column is 

ith compartment, mol/L 

ith compartment, mol/L 

ith compartment, mol/L 

ith compartment, mol/L 

partitioned 

Then the theoretical plate model gives 

dmNa.i = V ( [ N ~ + ] ~ - ~  - (NatIi) 
dt (35) 

dmca~i  = v([Ca2+]i-1 - [Ca2'li), i = 1, 2,. . . , N  (36) dt 

We assume here that [Na'], and [Ca2+Io are the influent concentrations of 
these ions. 

The requirement that the solid phase be electrically neutral gives 
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MODELING OF ION-EXCHANGE COLUMN OPERATION. I 777 

where, as before, SO is the concentration of anionic sites (assumed singly 
charged) in the ion exchanger, in mol/L. The mass balance equations 
now take the form 

The requirement of local equilibrium gives an  equation essentially 
identical to Eq. (26), 

Kj is subscripted since it varies with the sodium and calcium ion 
concentrations through their effects on activity coefficients. We shall 
neglect this in the following, but it could fairly readily be included. 

The same procedure used to derive Eq. (30) above is then used to 
obtain a cubic equation in c ~ ~ , ~ ,  

where 

An ion-exchange run on the column is then modeled as follows. The 
initial state of the column is assumed given (concentrations of both ions 
in the liquid and solid phases of all compartments), as  is the composition 
of the solution being used to elute the column. Equations (35) and (36) are 
then integrated forward one increment in time, At. The new values of the 
mNa, and mcaj are substituted into Eqs. (42)-(45), and the new values of 
the cCaj are calculated by solving the cubics, Eq. (41). Equations (37)-(39) 
are solved for the other concentrations; these are given by 
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778 WILSON 

If one is using a concentration-dependent equilibrium constant in Eq. 
(40), one would next calculate a corrected value of Ki and repeat the 
process of determining the concentrations, iterating as necessary to 
obtain convergence. (We did not do this.) One is then ready to integrate 
Eqs. (35) and (36) one more step At forward in time and repeat the 
calculation of the concentrations. And so on, until the run is complete. 

The numerical integration was done by means of a standard predictor- 
corrector method (26); this operates as follows. 
Starter formula: 

Predictor: 

Corrector: 

Here 

As will be seen in the section on results, use of Eqs. ( 3 5 )  and (36) to 
describe advection leads to a good deal of spreading of the elution front 
from numerical dispersion. In the numerical integration scheme we 
therefore replaced Eqs. (35) and (36) with one of the following three pairs 
of equations obtained from Eqs. (12)-(14). 

1 3 d m N a ~ i  = v( - - 
dt  2 2 

+ 2[Na+]i-l - - [Na'li) ( 5 2 )  
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or 

779 

7 3 3 
dt 8 8 8 + - [Na+Ii-, - - [Na+ji  - - [Na+]i+l) (54) 

or 

1 
- [Na+Ii - 
2 

1 
2 

. - [Ca2+li  - - 1 [Ca2+1i+l) (57 )  
3 

These advection algorithms resulted in quite marked decreases in 
numerical dispersion, as will be seen in the next section. It was found, 
however, that in the context of the ion-exchange problem they exhibit 
instabilities for some values of the system parameters; these show up as 
oscillations in the concentration profiles in the column and “wiggles” in 
the concentrations in the elution front as it comes off the column. 
Examples of this behavior will be shown in the next section. In a few of 
the runs the instabilities were sufficiently severe to result in program 
crashes-error conditions caused by negative or complex concentrations. 
Some way of increasing the mathematical stability of the algorithm used 
to model advection was obviously needed. 

In another connection Koussis had suggested to us the use of linear 
combinations of advection algorithms of greater and lesser numerical 
dispersivity as a cheap and effective way to model physical dispersion 
(25). This led us to try linear combinations of the simple, extremely stable, 
very dispersive theoretical plate algorithm (Eq. 1) with one of the less 
dispersive but also less stable algorithms (Eq. 12, 13, or 14). We therefore 
tested two types of combined algorithms, 

and 
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780 WILSON 

ac 
ax - v - - u * [ ( I ]  + ( I  - ~ ) * ( 1 4 ]  (59) 

where 0 < a < 1. Relatively small components of the theoretical plate 
algorithm (Eq. 1) were found to eliminate the instability problems, and 
yielded elution fronts which were substantially narrower than those 
resulting from the use of the theoretical plate algorithm alone. 

COMPUTATIONS AND RESULTS 

A program to carry out the numerical work was written in GW BASIC, 
the equivalent of BASICA, and run on a Zenith 150 microcomputer. A 
run in which the column was represented by 20 compartments and in 
which two column volumes of eluting liquid were passed into the column 
required about 3 h of computer time when the program was run in 
interpreted GW BASIC. These long running times for the program 
encouraged us to acquire a BASICA compiler; this reduced the amount 
of computer time for a run like that described above to about 30 min. 

We next examined some representative results. We considered the 
elution of an  ion-exchange column nearly saturated with Ca2+ by elution 
with relatively concentrated NaCl solutions. It was assumed in all cases 
that the volume of the column was 20 L; 10 L of which was solid ion 
exchanger and 10 L of which was mobile aqueous phase. The ion- 
exchange resin was assumed to contain 3.0 mol/L of univalent anionic 
sites. The column was assumed to be brought to equilibrium initially with 
a very large volume of solution having ICa”] = 0.20 M, “a’] = 0.05 M, 
and [Cl-] = 0.45 M. The other parameters in the model are indicated in 
the figure legends. 

In Figs. 2, 3, and 4 are shown eluate concentrations of C1-, Na’, and 
Ca7+ as  functions of time elapsed since the initiation of elution. In these 
runs the advection term is represented by 0.3 X Eq. ( I )  + 0.7 X Eq. (13) 
which, as we shall see shortly, very markedly reduces numerical 
dispersion but still avoids instability. Note that in these three figures the 
abscissa has its origin at 5 min. We find that the widths of the CI- and 
Na’ fronts are narrowed as N ,  the number of compartments into which 
the column is partitioned, increases from 10 to 40, the width of the peak in 
the Ca2+ concentration decreases, and its height increases. Intuitively, 
this is what one would expect, and it is in qualitative agreement with 
Tamamushi’s findings (22) for gas chromatography columns. The width 
of the C1- front gives a measure of the extent of the numerical dispersion. 
In the absence of numerical dispersion, the C1- curves would show an 
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Time (min) 

FIG. 2. Plots of effluent [Ca2+], "a+], and [Cl-] versus time. V, = 1.0 L, V, = 1.0 L, So = 3.0 
M, KCaMa = 4.0, N = 10, v = 1.0 L/min, initial "a+] = 0.05 M ,  initial [Ca2+] = 0.20 M, 

influent "a+] = 3.0 M, influent [Ca2+] = 0.05 M ,  At = 0.025 min, a = 0.3 in Eq. (58). 

5 10 15 20 25 30 
Time (min) 

FIG. 3. Plots of effluent [Ca"], "a'], and [Cl-1 versus time. N = 20; other parameters as in 
Fig. 2. 
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5 10 15 20  25 
Time (mid 

Fir.. 4. Plots of effluent [Cazt], “a’], and [Cl-I versus time. N = 40; other parameters as in 
Fig. 2. 

infinitely sharp step in concentration, since no physical dispersion is 
included in our model. The much greater width of the Na’ front is a 
measure of the “chemical dispersion” of the system; we shall be 
concerned with this later. 

Figures 5 and 6 plot the C1- effluent concentrations for models having 
10,20, and 40 compartments. In Figure 5 the theoretical plate model was 
used; in Fig. 6, 0.3 X Eq. (1) + 0.7 X Eq. (13). Front widths are substan- 
tially less in Fig. 6 than in Fig. 5,  demonstrating the very substantial 
reductions in numerical dispersion which result from the use of an 
upwind, asymmetrical algorithm for representing advection. This makes 
possible very substantial savings in computer time, since the number of 
compartments required to obtain a given front width is reduced to about 
half that required by the theoretical plate model, and the size of At, the 
time increment in the numerical integration, can be doubled. The total 
savings in computer time required amount, therefore, to about 75%. 

Figure 7 shows the dependence of the Ca*+ elution peak on the number 
of compartments, N .  As N is increased, the Ca2+ peak becomes somewhat 
narrower and sharper, but chemical dispersion evidently gives it an 
intrinsic and rather substantial width. Kinetic effects, not included in our 
model, would result in still further broadening. 

The effect of changing the proportions of the two advection algorithms 
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0 5 10 15 x) 
Time (min) 

FIG. 5. Plots of effluent [Cl-] versus time. Advection is represented by Eq. (I), the theoretical 
plate model. N = 10, 20, 40, as labeled. Other parameters as in Fig. 2. 

0 
0 5 10 15 20  

Time ( m i d  

FIG. 6. Plots of effluent [Cl-1 versus time. Advection is represented by Eq. (58) with a = 0.3. 
N = 10, 20, 40, as labeled. Other parameters as in Fig. 2. 
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FIG. 7. Plots of effluent [Ca2+] versus time. Advection is represented by Eq. (58) with 
u = 0.3. N = 10, 20, 40, as labeled. Other parameters as in Fig. 2. 

Time ( m i d  

FIG. 8. Plots of effluent ICa2+] versus time. Advection is represented by Eq. (58); u = 1,0.3, 
0.2,O.l from bottom to top. Influent pa'] = S.OM, N = 20, Ar = 0.05 min; other parameters 
as in Fig. 2. Similar runs made with Eq. (59) representing advection are indistinguishable 

from these. 
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301 
2 

0 5 10 15 20 2 5  
Time (min) 

FIG. 9. Plots of effluent ICa"] versus time. Advection is represented by Eq. (58) with n = 0.3. 
A? = 0.05 min. influent "a+] = 7.5. 5.0. 2.5 M (top to bottom), N = 20; other parameters as 

in Fig. 2. 

used is shown in Fig. 8. The Ca2+ elution peak becomes progressively 
more narrow and tall as the proportion of the highly dispersive 
theoretical plate algorithm is decreased. Evidently, using such a linear 
combination of a dispersive and a nondispersive algorithm provides a 
satisfactory method for representing physical dispersion. 

In Fig. 9 we see the effects of changing the NaCl concentration in the 
eluting solution. Increasing it results in a much narrower Ca" elution 
peak and in drastically reduced tailing. These results suggest that it might 
be advisable to hit the column initially with the highest feasible NaCl 
concentration, and then push this on through the column with a 
substantially more dilute solution; this might reduce chemicals costs and 
waste disposal problems. 

The effects of changing the relative binding strength of Ca2+ relative to 
Na+ are exhibited in Fig. 10. As one would expect, increasing the strength 
of Ca2+ binding broadens the elution peak and increases the extent of 
peak tailing. 

In conclusion, we note that the use of asymmetrical upwind algorithms 
having low numerical dispersion can drastically reduce the amount of 
computation required to model ion-exchange columns having a large 
number of theoretical plates. Also, the solution of the cubic equation is 
best carried out exactly by Tartaglia's (Cardano's) method, rather than by 
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FIG. 10. Plots of effluent [Ca2+] versus time. Advection is represented by Eq. (58) with a = 3. 
At = 0.05 rnin, influent “a+] = 5.0 M, N = 20, K = 2, 4, 8 from top to bottom; other 

parameters as in Fig. 2. 

numerical approximation techniques. The resulting model can be 
computed in a reasonable length of time on a microcomputer running 
compiled BASIC. 

A diskette for MS-DOS computers with the BASICA source program 
and the compiled program is available for $3.00 to cover the costs of 
mailing and the diskette. 
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